p-group, metabelian, nilpotent (class 2), monomial
Aliases: C24.249C23, C23.314C24, C22.1292+ 1+4, C4⋊C4⋊33D4, (C22×C4)⋊23D4, C23⋊2D4⋊8C2, C2.7(Q8⋊6D4), C23.153(C2×D4), C2.19(D4⋊5D4), C4.162(C4⋊D4), C23.20(C4○D4), (C22×C4).49C23, C23.7Q8⋊34C2, C23.10D4⋊10C2, (C2×C42).463C22, (C23×C4).332C22, C22.194(C22×D4), C24.C22⋊31C2, C24.3C22⋊28C2, (C22×D4).502C22, C23.65C23⋊34C2, C2.21(C22.19C24), C2.11(C22.29C24), C2.C42.78C22, C2.6(C22.49C24), C2.12(C22.47C24), (C2×C4×D4)⋊21C2, (C2×C4⋊D4)⋊5C2, (C2×C4).679(C2×D4), C2.18(C2×C4⋊D4), (C2×C4).94(C4○D4), (C2×C42⋊C2)⋊20C2, (C2×C4⋊C4).205C22, C22.193(C2×C4○D4), (C2×C22⋊C4).109C22, SmallGroup(128,1146)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C24.249C23
G = < a,b,c,d,e,f,g | a2=b2=c2=e2=f2=1, d2=b, g2=a, ab=ba, ac=ca, ede=gdg-1=ad=da, ae=ea, af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >
Subgroups: 740 in 352 conjugacy classes, 112 normal (42 characteristic)
C1, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, D4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C24, C24, C2.C42, C2×C42, C2×C42, C2×C22⋊C4, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C42⋊C2, C4×D4, C4⋊D4, C23×C4, C22×D4, C22×D4, C23.7Q8, C24.C22, C23.65C23, C24.3C22, C24.3C22, C23⋊2D4, C23.10D4, C2×C42⋊C2, C2×C4×D4, C2×C4⋊D4, C24.249C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C4⋊D4, C22×D4, C2×C4○D4, 2+ 1+4, C2×C4⋊D4, C22.19C24, C22.29C24, D4⋊5D4, Q8⋊6D4, C22.47C24, C22.49C24, C24.249C23
(1 13)(2 14)(3 15)(4 16)(5 23)(6 24)(7 21)(8 22)(9 27)(10 28)(11 25)(12 26)(17 64)(18 61)(19 62)(20 63)(29 39)(30 40)(31 37)(32 38)(33 44)(34 41)(35 42)(36 43)(45 59)(46 60)(47 57)(48 58)(49 53)(50 54)(51 55)(52 56)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 25)(2 26)(3 27)(4 28)(5 39)(6 40)(7 37)(8 38)(9 15)(10 16)(11 13)(12 14)(17 33)(18 34)(19 35)(20 36)(21 31)(22 32)(23 29)(24 30)(41 61)(42 62)(43 63)(44 64)(45 53)(46 54)(47 55)(48 56)(49 59)(50 60)(51 57)(52 58)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 55)(2 52)(3 53)(4 50)(5 41)(6 35)(7 43)(8 33)(9 59)(10 46)(11 57)(12 48)(13 51)(14 56)(15 49)(16 54)(17 38)(18 29)(19 40)(20 31)(21 36)(22 44)(23 34)(24 42)(25 47)(26 58)(27 45)(28 60)(30 62)(32 64)(37 63)(39 61)
(1 2)(3 4)(5 24)(6 23)(7 22)(8 21)(9 10)(11 12)(13 14)(15 16)(17 36)(18 35)(19 34)(20 33)(25 26)(27 28)(29 40)(30 39)(31 38)(32 37)(41 62)(42 61)(43 64)(44 63)(45 50)(46 49)(47 52)(48 51)(53 60)(54 59)(55 58)(56 57)
(1 23 13 5)(2 6 14 24)(3 21 15 7)(4 8 16 22)(9 37 27 31)(10 32 28 38)(11 39 25 29)(12 30 26 40)(17 46 64 60)(18 57 61 47)(19 48 62 58)(20 59 63 45)(33 54 44 50)(34 51 41 55)(35 56 42 52)(36 49 43 53)
G:=sub<Sym(64)| (1,13)(2,14)(3,15)(4,16)(5,23)(6,24)(7,21)(8,22)(9,27)(10,28)(11,25)(12,26)(17,64)(18,61)(19,62)(20,63)(29,39)(30,40)(31,37)(32,38)(33,44)(34,41)(35,42)(36,43)(45,59)(46,60)(47,57)(48,58)(49,53)(50,54)(51,55)(52,56), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,25)(2,26)(3,27)(4,28)(5,39)(6,40)(7,37)(8,38)(9,15)(10,16)(11,13)(12,14)(17,33)(18,34)(19,35)(20,36)(21,31)(22,32)(23,29)(24,30)(41,61)(42,62)(43,63)(44,64)(45,53)(46,54)(47,55)(48,56)(49,59)(50,60)(51,57)(52,58), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,55)(2,52)(3,53)(4,50)(5,41)(6,35)(7,43)(8,33)(9,59)(10,46)(11,57)(12,48)(13,51)(14,56)(15,49)(16,54)(17,38)(18,29)(19,40)(20,31)(21,36)(22,44)(23,34)(24,42)(25,47)(26,58)(27,45)(28,60)(30,62)(32,64)(37,63)(39,61), (1,2)(3,4)(5,24)(6,23)(7,22)(8,21)(9,10)(11,12)(13,14)(15,16)(17,36)(18,35)(19,34)(20,33)(25,26)(27,28)(29,40)(30,39)(31,38)(32,37)(41,62)(42,61)(43,64)(44,63)(45,50)(46,49)(47,52)(48,51)(53,60)(54,59)(55,58)(56,57), (1,23,13,5)(2,6,14,24)(3,21,15,7)(4,8,16,22)(9,37,27,31)(10,32,28,38)(11,39,25,29)(12,30,26,40)(17,46,64,60)(18,57,61,47)(19,48,62,58)(20,59,63,45)(33,54,44,50)(34,51,41,55)(35,56,42,52)(36,49,43,53)>;
G:=Group( (1,13)(2,14)(3,15)(4,16)(5,23)(6,24)(7,21)(8,22)(9,27)(10,28)(11,25)(12,26)(17,64)(18,61)(19,62)(20,63)(29,39)(30,40)(31,37)(32,38)(33,44)(34,41)(35,42)(36,43)(45,59)(46,60)(47,57)(48,58)(49,53)(50,54)(51,55)(52,56), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,25)(2,26)(3,27)(4,28)(5,39)(6,40)(7,37)(8,38)(9,15)(10,16)(11,13)(12,14)(17,33)(18,34)(19,35)(20,36)(21,31)(22,32)(23,29)(24,30)(41,61)(42,62)(43,63)(44,64)(45,53)(46,54)(47,55)(48,56)(49,59)(50,60)(51,57)(52,58), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,55)(2,52)(3,53)(4,50)(5,41)(6,35)(7,43)(8,33)(9,59)(10,46)(11,57)(12,48)(13,51)(14,56)(15,49)(16,54)(17,38)(18,29)(19,40)(20,31)(21,36)(22,44)(23,34)(24,42)(25,47)(26,58)(27,45)(28,60)(30,62)(32,64)(37,63)(39,61), (1,2)(3,4)(5,24)(6,23)(7,22)(8,21)(9,10)(11,12)(13,14)(15,16)(17,36)(18,35)(19,34)(20,33)(25,26)(27,28)(29,40)(30,39)(31,38)(32,37)(41,62)(42,61)(43,64)(44,63)(45,50)(46,49)(47,52)(48,51)(53,60)(54,59)(55,58)(56,57), (1,23,13,5)(2,6,14,24)(3,21,15,7)(4,8,16,22)(9,37,27,31)(10,32,28,38)(11,39,25,29)(12,30,26,40)(17,46,64,60)(18,57,61,47)(19,48,62,58)(20,59,63,45)(33,54,44,50)(34,51,41,55)(35,56,42,52)(36,49,43,53) );
G=PermutationGroup([[(1,13),(2,14),(3,15),(4,16),(5,23),(6,24),(7,21),(8,22),(9,27),(10,28),(11,25),(12,26),(17,64),(18,61),(19,62),(20,63),(29,39),(30,40),(31,37),(32,38),(33,44),(34,41),(35,42),(36,43),(45,59),(46,60),(47,57),(48,58),(49,53),(50,54),(51,55),(52,56)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,25),(2,26),(3,27),(4,28),(5,39),(6,40),(7,37),(8,38),(9,15),(10,16),(11,13),(12,14),(17,33),(18,34),(19,35),(20,36),(21,31),(22,32),(23,29),(24,30),(41,61),(42,62),(43,63),(44,64),(45,53),(46,54),(47,55),(48,56),(49,59),(50,60),(51,57),(52,58)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,55),(2,52),(3,53),(4,50),(5,41),(6,35),(7,43),(8,33),(9,59),(10,46),(11,57),(12,48),(13,51),(14,56),(15,49),(16,54),(17,38),(18,29),(19,40),(20,31),(21,36),(22,44),(23,34),(24,42),(25,47),(26,58),(27,45),(28,60),(30,62),(32,64),(37,63),(39,61)], [(1,2),(3,4),(5,24),(6,23),(7,22),(8,21),(9,10),(11,12),(13,14),(15,16),(17,36),(18,35),(19,34),(20,33),(25,26),(27,28),(29,40),(30,39),(31,38),(32,37),(41,62),(42,61),(43,64),(44,63),(45,50),(46,49),(47,52),(48,51),(53,60),(54,59),(55,58),(56,57)], [(1,23,13,5),(2,6,14,24),(3,21,15,7),(4,8,16,22),(9,37,27,31),(10,32,28,38),(11,39,25,29),(12,30,26,40),(17,46,64,60),(18,57,61,47),(19,48,62,58),(20,59,63,45),(33,54,44,50),(34,51,41,55),(35,56,42,52),(36,49,43,53)]])
38 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 4A | ··· | 4H | 4I | ··· | 4V | 4W | 4X |
order | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | 4 |
size | 1 | 1 | ··· | 1 | 4 | 4 | 4 | 4 | 8 | 8 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | 8 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | C4○D4 | C4○D4 | 2+ 1+4 |
kernel | C24.249C23 | C23.7Q8 | C24.C22 | C23.65C23 | C24.3C22 | C23⋊2D4 | C23.10D4 | C2×C42⋊C2 | C2×C4×D4 | C2×C4⋊D4 | C4⋊C4 | C22×C4 | C2×C4 | C23 | C22 |
# reps | 1 | 1 | 2 | 1 | 3 | 2 | 2 | 1 | 1 | 2 | 4 | 4 | 8 | 4 | 2 |
Matrix representation of C24.249C23 ►in GL6(𝔽5)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
0 | 2 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 1 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 4 |
G:=sub<GL(6,GF(5))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[0,3,0,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1],[0,4,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4] >;
C24.249C23 in GAP, Magma, Sage, TeX
C_2^4._{249}C_2^3
% in TeX
G:=Group("C2^4.249C2^3");
// GroupNames label
G:=SmallGroup(128,1146);
// by ID
G=gap.SmallGroup(128,1146);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,2,224,253,758,723,675,80]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=e^2=f^2=1,d^2=b,g^2=a,a*b=b*a,a*c=c*a,e*d*e=g*d*g^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations